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Abstract

Heavy-fermion excitations require the presence of a low-energy scale in the system. In recent 
years it has become clear that these scales can result from rather different physical processes. 
The Kondo effect is one of them, certainly the one most studied. We describe and discuss in 
addition to Kondo lattices two other sources of heavy quasiparticles: the Zeeman route to heavy 
fermions which applies to Nd2-xCexCuO4 (0.1 < x < 0.2) and a scenario of nearly half-filled 
Hubbard chains which is related to the semimetal Yb4As3. It is suggested that these are not the 
only processes leading to heavy-fermion behaviour.

1 Introduction

The investigation of heavy-fermion systems with heavy-quasiparticle excitations 
has developed into a new branch of low-temperature physics. Recent reviews have 
been given of theoretical (Lee et al., 1986; Fulde et al., 1988; Schlottmann, 1984; 
Zwicknagl, 1993; Norman and Koelling, 1993; Kasuya, 1993; Hewson, 1993) and 
experimental (Stewart, 1984; Ott, 1988; Grewe and Steglich, 1991; Wachter, 1994) 
developments in this field. In most cases these compounds contain Ce, Yb, U or 
Np as one of their constituents, implying that 4/ or 5/ electrons are involved. 
Examples are the metals CeAb, CeCu2Si2, CeRu2Si2, CeCuß, YbCu2Si2, UBei3, 
UPt3, and NpBei3. But also the electron-doped cuprate Nd2-xCea;CuC)4 shows 
heavy-fermion behaviour (Brugger et al., 1993) in the range of 0.1 < x < 0.2. 
Heavy-fermion excitations have also been found in semimetals like Yb4As3, Sni3Se4 
or in some of the Ce and Yb monopnictides and even in insulators like YbBi2 or 
SmBß (see, for example, Proc., 1995).

We speak of heavy-fermion behaviour when a system meets the following con
ditions: (a) The low temperature specific heat C = -yT has a coefficient 7 of order 
1 Jmol-1K~2, rather than 1 mJmol-1K~2 as, e.g., found for sodium metal; (b) the 
Pauli susceptibility \s is similarly enhanced as 7; (c) the ratio R = 7v2k2Bxs/(3/z|ff7) 
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(Sommerfeld Wilson ratio) is of order unity. Here ^eff is the effective magnetic 
moment of the quasiparticles. Both quantities 7 and %s are proportional to the 
quasiparticle density of states at the Fermi level N*(0). The latter is proportional 
to m*, i.e., the effective mass of the fermionic excitations. Large values of 7 and \s 
can therefore be interpreted by ascribing a large m* to the quasiparticles. When 
R is calculated, the density of states 2V*(0) drops out. For free electrons R — 1, 
while in the presence of quasiparticle interactions R — (1 + Fq )_1. The Landau 
parameter Fq relates to the interactions and enters \s. When conditions (a)-(c) 
are met, we may assume a one-to-one correspondence between the quasiparticle 
excitations of the complex system and those of a free electron gas, provided we 
use the effective mass m* and, in the case of semimetals or insulators, the effective 
charge e*, instead of the corresponding bare quantities.

Heavy-fermion behaviour requires the presence of a low-energy scale in the sys
tem. Usually, that scale is characterized by a temperature T*. As the temperature 
of the system increases to values above T*, the quasiparticles lose their heavy-mass 
character. The specific heat levels off, and the susceptibility changes from Pauli- to 
Curie-like behaviour. With increasing temperature the rare-earth or actinide ions 
behave more and more like ions with well-localized f electrons.

One key problem is to understand the physical origin of the low-energy scales. 
Until few years ago, it was commonly believed that the Kondo effect is the sole 
source of heavy-fermion behaviour. The physics associated with the Kondo effect is 
extensively described in a monograph by Hewson (1993) and a number of reviews 
(Lee at al., 1986; Fulde et al., 1988; Schlottmann, 1984; Zwicknagl, 1993; Norman 
and Koelling, 1993; Kasuya, 1993). However, more recently it has been found 
that heavy quasiparticles may result from rather different physical effects. In all 
cases a lattice of 4/ (or 5/) ions is involved. In metallic systems it is coupled to 
conduction electrons. In that case the conduction electrons can be either weakly 
correlated like in CeA13, or they can be strongly correlated like in the high-Tc 
cuprates. In the latter case the correlations are perhaps not as strong as those 
of the f electrons, but they may influence substantially the physical properties of 
the system. This situation is encountered, e.g., in Nd2_a;CexCuO4 and it will be 
shown later that here the Zeeman effect is responsible for the formation of heavy 
fermions. In a semimetal like Yb4As3, the heavy quasiparticles result from the 
4/ electron system itself, i.e., without having a coupling to conduction electrons 
crucially contributing. Thus, instead of having one single physical origin, heavy 
fermions may have a variety of effects responsible for their existence.

Obviously, the low-lying excitations characterizing heavy-fermion systems in
volve predominantly spin degrees of freedom. Direct evidence is given by the 
amount of entropy associated with the excess specific heat. The latter is associated 
with an entropy of order S ~ kB in per f site, where vy denotes the degeneracy 
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of the crystal-field ground state of the atomic f shell. It is pretty safe to state that 
in all likelihood yet unknown mechanisms will add to the presently known ones. In 
the following, a discussion is given of the three routes to heavy-fermion behaviour 
just outlined.

2 Kondo lattices

The essence of the single-site Kondo effect is the formation of a singlet ground
state due to a weak hybridization of the incomplete 4/ shell with the conduction 
electrons. A specific form of the singlet wavefunction is obtained by starting from 
the Anderson impurity Hamiltonian

H = + <7 + C1)
km m

+ Em(/+cfem+c+m/m) +h0.
km

Here /+ denotes the creation operator of an f electron in state m of the lowest J 
multiplet and = f+fm. The /-orbital energy is ey and U is the f — f Coulomb 
repulsion. The ckm create conduction electrons with momentum | k j — k and the 
three quantum numbers £ = 3, J and m. The hybridization between the / and 
conduction electrons is given by the matrix element V(k). Finally, Ho contains all 
those degrees of freedom of the conduction electrons which do not couple to the 
impurity. The following ansatz for the singlet ground-state wave function is due to 
Varma and Yafet (1976).

Ho) = ^(1 + ~^= ^a(k)f+ckm\ I 0O) (2)

where | øo) represents the Fermi sea of the conduction electrons. The ansatz (2) 
is closely related to the one suggested by Yoshida (1966; see also Yoshida and 
Yoshimori, 1973) for the ground state of the Kondo Hamiltonian. The variational 
parameters A and Aa(k) are obtained by minimizing the energy. The energy Eo of 
iV’o) is always lower than the one of the multiplet | 7^m) = /+ | </>o). The difference 
e is found to be

e = -D exp[— I €f I /(z/y7V(O) V2)] (3)

and denotes the energy gain due to the formation of the singlet. Here D is half 
of the bandwidth of the conduction electrons and 7V(0) is their density of states 
per spin direction at the Fermi energy. It is customary to associate with this 
energy gain a temperature T/<, i.e., the Kondo temperature. The singlet-triplet 
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excitation energy is often of the order of a few meV only, and provides a low- 
energy scale. When a lattice of f ions is considered like, e.g., CeAl3 the Anderson 
lattice Hamiltonian replaces Eq. (1). The energy scale kßT^ is replaced here by 
kßT* which takes into account modifications in the presence of the lattice, i.e., due 
to interactions between different f sites. The energy gain due to singlet formation 
competes here with the one due to the RKKY interaction when the f sites are in 
a magnetic state (Doniach, 1971, 1987). In the limit of small hybridization V the 
RKKY interaction energy always wins out because it is proportional to V4 while 
the singlet-formation energy depends exponentially on V, see Eq. (3), and therefore 
is smaller. This seems to be the case in systems like CeAl2, CePb3 and NpBei3 
which become antiferromagnets at low temperatures.

In addition to T* there exists another characteristic temperature Tcoh < 
below which the local singlet-triplet excitations lock together and form coherent 
quasiparticles with large effective masses. The details of this coupling are not 
yet understood, but de Haas-van Alphen measurements demonstrate convincingly 
that the f electrons behave like delocalized electrons. At the Fermi surface they 
show strong anisotropies in the effective mass. It is somewhat surprising that 
one can calculate the Fermi surface of a heavy-electron system and determine the 
anisotropic masses with one adjustable parameter only. This is achieved by renor
malized band-structure calculations (Zwicknagl, 1993, 1990; Razafimandimby et 
al., 1984; d’Ambrumenil and Fulde, 1985; Sticht et al., 1986; Strange and Newns, 
1986; Zwicknagl et al., 1990). Thereby the effective potential seen by a quasipar
ticle is described by energy-dependent phase shifts rff(e) of the different atoms A. 
The index £ refers to the different angular momentum channels.

In the following we consider CeRu2Si2 as an example (Zwicknagl, 1993, 1990; 
Zwicknagl et al., 1990). The essential point is to use for the phase shifts the ones 
computed within the local-density approximation (LDA) to density functional the
ory, with the exception of the £ = 3 phase shift of the Ce ion. This approximation 
neglects the coupling of conduction electrons to different configurations of the 4/ 
or 5/ shell with fixed f electron number. [The mass enhancement of the conduction 
electrons of Pr metal falls into that category. It results from the virtual transitions 
between different crystal-field eigenstates of the 4/2 system caused by the coupling 
between conduction and 4/ electrons (Fulde and Jensen, 1983; see also White and 
Fulde, 1981)]. Thus, only the 7/^3(e) phase shift remains undetermined. Accord
ing to Hund’s rules the ground-state multiplet of the 4/2 configuration of Ce is 
J = 5/2 with the J = 7/2 multiplet being much higher in energy. Therefore, we 
may set ^jl7/2(er) — 0. Of the J = 5/2 multiplet, only the Kramers-degenerate 
crystal-field ground state is considered, because it is the only state occupied at low 
temperatures. Let t denote the degeneracy index of that ground state. Only the 
phase shift rj^e(eF) among the different £ = 3 channels differs then from zero. It 
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must contain the strong correlations of the 4/ electrons and is unknown. In the 
spirit of Landau’s Fermi liquid theory we expand this unknown function around 
the Fermi energy and write

^?e(e) = - £p) + °((e - er)2)- (4)

Of the two parameters one, i.e., r/^e(er) is fixed by requiring that the number of 
4/ electrons ny = 1. According to Friedel’s sum rule this implies 7/^u(eF) — 
The remaining parameter a fixes the slope of the phase shift at eF. The latter 
determines the density of states and hence the effective mass. We set a = (fcßT*)-1 
and determine T* by requiring that the linear specific heat coefficient 7 calculated 
from the resulting quasiparticle dispersions agrees with the experimental one. The 
different computational steps are summarized in Fig. 1. Calculations of this form 
have explained and partially predicted (Zwicknagl, 1993, 1990; Zwicknagl et al., 
1990) the large mass anisotropies in CeRu2Si2 (Lonzarich, 1988). For more details 
on renormalized band theory we refer to comprehensive reviews which are available 
(Zwicknagl, 1993; Norman and Koelling, 1993).

When the temperature increases beyond TCoh the excitations lose their coher
ence properties and the problem reduces to that of independent impurities. In that 
regime the specific heat contains large contributions from the incoherent part of the 
f electron excitations. The noncrossing approximation (NCA) is a valuable tool 
for treating the coupled 4/ and conduction electrons in that temperature regime 
(Aoki et al., 1993; Keiter and Kimball, 1971; Kojima et al., 1984). It leads to a 
system of coupled equations of the form

So(2)

Sm(2)

(5)

Here T = 7t7V(0)V2 and K±(z) are defined by

K±(£) =
1 f+°° . ^(±e)/(e)

z + e (6)

where /(e) is the Fermi energy and N(e) is the energy-dependent conduction
electron density of states. The function £a(z) and pa(z) (a = 0;m) are related to 
each other through

= -ilm{RQ(z)} 
7T

1

12

Pa(^)

Ra(z)
2 €q, Sq(.z)

(7)
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Figure 1. Different computational steps for a renormalized band-structure calcula
tion (Zwicknagl, 1993)).

with eQ=0 = 0, ea=m = The NCA equations have to be solved numerically 
(Bickers, 1987; Bickers et al., 1985). However, one can find simple, approximate so
lutions which have the virtue that crystal-field splittings can be explicitly included, 
a goal which has not been achieved yet by numerical methods. Once the pQ(e) are 
known, one can determine, e.g., the temperature dependence of the /-electron oc
cupancies nfm = through

i r+o° nfm(T) = — / d6pm(e)e_/3(e_M),
J-oo

where //. is the chemical potential and 

Z/ = / +
m

(8)

(9)

is the partition function of the / electrons. Knowing the n/m(T) enables us to 
compute quantities like the temperature dependence of the quadrupole moment of
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Figure 2. Temperature dependence of the quadrupole moment Q(T) of the 4/ 
electrons in YbCu2Si2- Crosses: experimental values; solid line: theoretical results 
for the parameters T* = 200 K, T = 47.4 meV and a crystal-field parameter = 
— 1.67 meV (Zevin et al., 1988).

the f sites
Q(r) = ^(m|(3J2-J2)|m)n/m(T). (10)

m

In Fig. 2 is shown a comparison between theory and experiments for the quadru
pole moment of Yb in YbCu2Si2 (Thomala et al., 1990; Zevin et al., 1988). The 
input parameters are T, T* and the CEF parameter B?. The latter determines the 
crystal-field splitting of the J = 7/2 ground-state multiplet of Yb3+.

When T T*, the f electrons can be treated as being localized. Their moment 
is weakly interacting with that of the conduction electrons and perturbation theory 
can be applied to study the resulting effects. The different temperature regimes are 
shown in Fig. 3. A beautiful demonstration of the above scenario is the experimen
tally observed difference in the Fermi surfaces of CeRu2Si2 and CeRu2Ge2 (King 
and Lonzarich, 1991). When Si is replaced by Ge the distance between Ce and its 
nearest neighbours is increased. This implies a decrease in the hybridization of the 
4 f electrons with the valence electrons of the neighbouring ions. While in CeRu2Si2 
the characteristic temperature is T* ~ 15 K, it is practically zero in CeRu2Ge2. De

T*0
T

NCA*— ren. —*■ 
bandstruct.

Figure 3. Different temperature regimes and theoretical methods for describing the 
low-energy excitations of a Kondo-lattice system

12*
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Haas-van Alphen experiments are performed at a temperature T ~ 1 K implying 
T <C T* for CeRu2Si2 while T T* for CeRu2Ge2- Therefore, the 4/ electron of 
Ce contributes to the volume of the Fermi sea in the former case, but not in the 
latter. Indeed, experiments show that the two Fermi surfaces have similar features 
but differ in volume by one electron (King and Lonzarich, 1991).

3 Zeeman route to heavy fermions

Low-temperature measurements of the specific heat and magnetic susceptibility 
demonstrate the existence of heavy-quasiparticle excitations in the electron-doped 
system Nd2-a:Cea;CuO4 (Brugger et al., 1993). For x = 0.2 and temperatures 
T < 1 K the linear specific heat coefficient is 7 = 4 J/(molK2). The magnetic 
susceptibility \s is approximately T-independent in that temperature regime and 
the Sommerfeld-Wilson ratio is R ~ 1.8 (see Fig. 4). While these features agree 
with those of other heavy-fermion systems, there are also pronounced differences. In 
superconducting heavy-fermion systems like CeCu2Si2 or UPt3 the Cooper pairs 
are formed by the heavy quasiparticles. This is evidenced by the fact that the 
jump in the specific heat AC at the superconducting transition temperature Tc 
is directly related to the large 7 coefficient, i.e., AC(T’c)/(7Tc) « 2.4. The low- 
energy excitations are therefore strongly reduced below Tc. In superconducting 
Ndi.85Ceo.i5Cu04 the formation of Cooper pairs has no noticeable effect on the 
heavy-fermion excitations. They remain unaffected by superconductivity.

A crucial difference between Nd2_a;Ce;cCuO4 and, e.g., CeCu2Si2 are the strong 
electron correlations between the conduction electrons present in the former, but 
not in the latter material. In the two-dimensional Cu-O planes of IN^-xCeæCuC^ 
with x > 0.1 we have to account for antiferromagnetic fluctuations which are 
very slow at low temperatures. There is considerable experimental evidence for 
this. Consider undoped Nd2CuO4, an antiferromagnet with a Néel temperature of 
Tn ~ 270 K. Since the exchange interactions between a Nd ion and its nearest- 
neighbour Cu ions cancel because of the antiferromagnetic alignment of the Cu 
spins, one is left with the next-nearest neighbour Cu-Nd spin interaction. The 
latter is of the form osCu- SNd and is larger than the Nd-Nd interaction. The 
Schottky peak in the specific heat seen in Fig. 4 results from the spin flips of the Nd 
ions in the staggered effective field o(sCu) set up by the Cu spins (Zeeman effect). 
It is also present in doped systems like Ndi gCeo^CuC^ where antiferromagnetic 
long-range order is destroyed by doping. This can only be understood if the changes 
in the preferred direction of the Cu spins occur sufficiently slowly, i.e., slower 
than 1O~10 s in the present case, so that the Nd spins can follow those motions 
adiabatically. Only then is a similar energy to that in Nd2CuO4 required to flip
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T(K)

Figure 4. Heavy-fermion behaviour of Nch-xCexCuO-i. (a) specific heat C'p(T); (b) 
Cp(T)/T-, (c) spin susceptibility for an overdoped sample with x = 0.2 (Brugger et 
al., 1993).

a Nd spin. This physical picture has been confirmed by recent inelastic neutron
scattering (Loewenhaupt et al., 1996) and p,SR experiments (J. Litters, private 
communication). Spin-glass behaviour can be excluded.

Due to an effective valency of Ce of approximately +3.5 the Cu-0 planes are 
doped with electrons, i.e., a corresponding number of Cu sites are in a 3d10 con
figuration. Since these sites have no spin they do not interact with the Nd ions. 
The extra electrons move freely in the Cu-0 planes and therefore, the interaction 
of a Nd ion with the next-nearest Cu site is repeatedly turned off and on. It is this 
feature which results in heavy-quasiparticle excitations.

Two model descriptions have been advanced in order to explain the low-energy 
excitations of Nda-æCeæCuO^ One is based on a Hamiltonian in which the Nd-Cu 
interaction is treated by a hybridization between the Nd 4/ and Cu 3d orbitals. 
Usually it is much easier to extract heavy quasiparticles from such a Hamiltonian 
than from one with a spin-spin interaction obtained after a Schrieffer-Wolff trans
formation. The slow, antiferromagnetic fluctuations of the Cu spins are replaced by 
a static staggered field acting on them. This symmetry-breaking field also accounts 
for the strong correlations in the Cu-0 planes because charge fluctuations between
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Figure 5. Schematic drawing of the quasiparticle excitation bands of 
Nd2-xCeæCuO4 for x > 0 (electron doping). The Fermi energy is indicated by 
a dotted line. Dashed lines: d-like excitations and solid lines: /-like excitations.

Cu sites are strongly reduced this way (unrestricted Hartree-Fock). Thus H reads

H = +h-c-)+ ^52cre1Q-Ria+ai<7 (11)
<ij>a ia

+ V ^atafra + h.C.) + ëf Æ/za-

iff ia

Here Q = (%, 7r) is a reciprocal lattice vector, R2 denotes the positions of the Cu 
ions and h is the size of the staggered field. The operators at, /t create an electron 
in the Cu 3dx2_y2 and the Nd 4/ orbital, respectively. For simplicity, only one Nd 
site per Cu site is considered and one 4/ orbital with energy ëf is assumed instead 
of seven. The energies ëf and V are strongly renormalized quantities because of 
the 4/ electron correlations.

The Hamiltonian (11) is easily diagonalized. Four bands are obtained, two of 
which are d-like (Cu) and two which are /-like (Nd). The dispersions of the four 
bands are given by

£„(k)= ï£|l!s±|^/(ekTe-/)2 + 4V2 4 (12)

where ek = (eg(k) + fi2/4)1/2 and e0(k) = -2t(coskx + cosfcy). A schematic plot 
is shown in Fig. 5. At half-filling only the lower / band is filled and the Schottky- 
peak contributions to C(T) are due to transitions from the filled lower to the empty
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Figure 6. Superconducting density of states for Ndi.ssCeo.isCuCU. A BCS-like 
model has been assumed. The /-like low-energy excitations remain virtually un
changed by the superconducting order parameter (Courtesy of G. Zwicknagl and S. 
Tornow).

upper f band. When the planes are doped with electrons the upper f band becomes 
partially filled resulting in low-energy excitations with large effective mass. The 
latter follows from the quasiparticle dispersion

-Eqp(k) — êy + . (13)
(c/ + ek)

It is noticed that here it is the Zeeman splitting of the f states which is responsible 
for the occurrence of heavy-electron behaviour. The effect of superconductivity on 
the heavy quasiparticles can be studied by adding an attractive interaction part 
7/attr for the charge carriers in the Cu-O planes to the Hamiltonian (Fulde and 
Zevin, 1993). For V = 0 the conventional BCS spectrum is recovered for the elec
trons in the upper Cu band. When V 0 the lower Cu band hybridizes with one of 
the dispersionless f bands. The lower d band remains unaffected by superconduc
tivity because pairing occurs in the upper d band. Therefore, superconductivity 
has no effect here. The upper d band hybridizes with the second f band. When 
H is diagonalized one finds a BCS gap in the Cu band while the f band remains 
virtually unchanged as compared with a vanishing superconducting order param
eter. The resulting density of states is shown in Fig. 6. The structure inside the 
gap stems from the spin degrees of freedom of the Nd ions.

The second model description of the Nd spins coupled to the Cu spin is based 
on stochastic forces acting on the latter (Igarashi et al., 1995). They mimic the 
interaction of the Cu spin with its environment, i.e., with the other Cu spins. In 
that case we start from the Hamiltonian

-H^int — ®Cu Sy , a > 0 (14)
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for the Nd-Cu interaction. For simplicity, both spins are assumed to be of mag
nitude S. We treat the vector Q = sCu/S like a classical variable, subject to a 
stochastic force. We assume a Gauss-Markov process in which case the distribution 
function obeys a Fokker-Planck equation. The correlation function is then of the 
form

(n(o)n(e)) = e~2D^ (15)

where Dr can be obtained from the nonlinear cr model (Chakravarty et al., 1989; 
Chakravarty and Orbach, 1990). Because there is no long range-order (f2(0)) = 0. 
The motion of the Nd spin is governed by the equation

^n(Z) =cj0(Q(£) x n(£)) (16)

where n(<) = Sy/S and cuo = aS. The spectral function

1 r+o°
^e^(n(°)nW> (17)

is evaluated by making use of the corresponding stochastic Liouville equation. We 
find that /(cu) is of the form

1 4Dr
3tt iv2 + (4£>r)2 T (side peaks at cj0)- (18)

While Dr(T) vanishes as T —> 0 in the presence of long-range order, it remains 
finite when the latter is destroyed by doping. A linear specific heat contribution of 
the 4/ spin is obtained from

T2 Jo cosh2(w/2T) (19)

when Dr(T = 0) / 0. The side peaks in I(cv) give raise to a Schottky-type 
contribution. The calculated specific heat is shown in Fig. 7 and reproduces the 
experiments reasonable well (compare with Fig. 4). One shortcoming of the theory 
in its present form is the low-temperature spin susceptibility which follows from

XimpCn = ^(9FbYS(S + 1) f du^^tanh^. 
o ,/ø LC zl (20)

We find Ximp(7n) ~ ln(Z)r/T) at low T. This is possibly due to the neglect of Nd-Nd 
interactions. However, when evaluated for T — 0.4 K one finds for Ndi.8Ceo.2Cu04 
a Sommerfeld-Wilson ratio of R ~ 1.4.
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Figure 7. Specific heat contribution of a Nd ion with S = 1/2. Curves (a)-(d) 
correspond to Dr/u>o = 0.05, 0.1, 0.5, 0.8, respectively (Igarashi et al., 1995).

4 Hubbard chains - Yb4As3

The intermetallic compound Yb4As3 is of the anti-ThaP4 structure. The Yb ions 
are situated on chains with directions along the diagonals of a cube. Thus we are 
dealing with a system of four sets of interpenetrating chains (see Fig. 8). We want 
to draw attention to the fact that the distance between neighbouring Yb ions on a 
chain exceeds the one between neighbouring ions on different chains.

Because As has a valency of —3, three of the four Yb ions have a filled 4/ shell, 
i.e., a valency +2, while one ion is in a 4/13 configuration (valency +3). Since all 
Yb sites are equivalent, the hole in the 4/ shell is shared between four Yb ions 
and the system is metallic. However, at a temperature Ts ~ 300 K the system 
undergoes a weak first-order phase transition into a trigonal distorted structure 
(Ochiai et al., 1990; Suzuki, 1993; Ochiai et al., 1993; Reinders et al., 1993; Kasuya, 
1994; Bonville, 1994). Thereby one set of chains, e.g., along [1,1,1] is shortened 
while the other three sets are elongating thereby leaving the volume of the unit 
cell unchanged. This results in charge ordering because the Yb3+ ions have a 
smaller ionic radius than the Yb2“1" ones and occupy the chains with smaller Yb-Yb 
distances (short chains) (Kasuya, 1994). The driving force for the phase transition
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Figure 8. (a) Structure of Yb4As3: large and small spheres represent the Yb and 
As ions, respectively, (b) Four sets of interpenetrating chains on which the Yb ions 
are located.

is the Coulomb repulsion between Yb3+ ions. Measurements of the Hall constant 
reveal a dramatic increase below Ts, implying a sharp drop in the charge carrier 
density with decreasing temperature. At low T one is left with one carrier per 103 
Yb ions. The resistivity increases below Ts with decreasing temperature until it 
reaches a maximum of approximately 10 mQ cm. At low T it is of the form p(T) = 
Pq + AT2 and therefore shows Fermi-liquid behaviour. The linear specific-heat 
coefficient 7 is found to be of order 7 ~ 200 mJ/(mol K2). The spin susceptibility 
is Pauli like and equally enhanced as 7, giving raise to a Sommerfeld-Wilson ratio 
of order unity. No indication of magnetic order is found down to T — 0.045 K, but 
below 2 K the susceptibility increases again which indicates the presence of another 
low energy scale (Bonville et al., 1994). The above findings strongly suggest heavy
fermion behaviour which is further confirmed by the observation that the ratio 
A/^v (u ~ 2) compares well with that of other heavy-fermion systems (Ochiai et 
al., 1993). One should appreciate that despite the low-carrier concentration the 7 
value exceeds that of, e.g., Na by a factor of more than 102. This demonstrates 
that the high density of low-energy excitations must clearly involve spin-degrees 
of freedom of the Yb3+ ions. The Kondo effect can be ruled out as a source of 
heavy quasiparticles. The low-energy scale which corresponds to the observed 7 
value is T* ~ 40 K. But inelastic neutron scattering shows a well resolved crystal
field excitation of Yb3+ at a comparable energy which would be impossible if local 
singlets would form with a binding energy of similar size.

A theory has been developed which can explain rather consistently the above 
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experimental findings. It is based on interpreting the structural phase transition in 
terms of a collective band Jahn-Teller (CBJT) effect (Fulde et al., 1995). The tran
sition is caused by a strong deformation-potential coupling which is quite common 
in mixed-valence systems. It is based on the Coulomb repulsion between differ
ent rare-earth ions. The CBJT transition splits the fourfold degenerate quasi-ld 
density of states into a nondegenerate one corresponding to the short chains and a 
threefold one due to the long chains. The nondegenerate one is lower in energy and 
would be half filled if charge ordering were perfect and the holes were uncorrelated 
fermions. Instead, the holes are strongly correlated. Two holes on a site imply a 
4/12 configuration for Yb and that has a much too high energy to occur. Therefore, 
we are dealing with an almost full lower (hole) Hubbard band rather than with an 
almost half-filled band. Therefore, the ideal system should be an insulator. That 
Yb4As3 is a semimetal and not an insulator is probably related to the nonvanishing 
hopping matrix elements between 4/ orbitals in the long and short chains. This 
may result in self-doping with a fraction of holes moving from the short to the long 
chains. Accurate conditions for self-doping are not easily worked out, but a first 
step in this direction was recently done (Blawid et al., 1996).

The phase transition can be described by an effective Hamiltonian of the form

H = 57 57 + h.C.) + er 57 + ^NLcO€r- (21)
p=l <ij><7 i,/z=l

The operators create (destroy) a 4/ hole at site i of chain // with ef
fective spin a (the crystal-field ground state of the J — 7/2 multiplet is two-fold 
degenerate). Interchain hopping matrix elements are neglected and so is the on-site 
Coulomb repulsion between holes, since near Ts holes are reasonably well separated. 
The notation <ij> refers to Yb-Yb nearest neighbours in a chain of length Nl- 
The trigonal-strain order parameter er < 0 corresponds to the bulk elastic constant 
4c0. The deformation potential AM is

With a choice of 4t = 0.2 eV obtained from LDA calculations, c0 = 1011 Qerg/cm3 
(Q is the volume of a unit cell) and A = 5 eV we obtain Ts ~ 250 K.

With increasing charge ordering (see Fig. 9), correlations become more and 
more important because with the increase in concentration of holes in the short 
chains their average distance decreases. Therefore, at low temperatures T the t- 
J Hamiltonian or a Hubbard Hamiltonian must be used. Using the former and 
making use of a slave-boson mean-field approximation we arrive at an effective
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Figure 9. Temperature dependence of the trigonal-strain order parameter Cp(T). 
Shown as an inset are the occupation numbers nM of the short (p, = 1) and long 
(/i > 1) chains (Bonville et al., 1994).

mass enhancement of the form

mb M+(3/4)XJ’ V 7

Here mb denotes the band mass, x = Xij = (52a is the deviation of
the short chains denoted by 1 from half filling and J = 4i2/U, where U is the 
on-site Coulomb repulsion between holes. With U — 10 eV one finds J = 10-3 eV 
and using x(T = 0) = (2/7r) sin(7r(l - <5)/2) with 6 — 10~3 one obtains a ratio of 
m*/mb ~ 100. This derivation of the mass enhancement hides somewhat the fact 
that spin degrees of freedom are responsible for the heavy quasiparticles. A more 
direct way of understanding the large 7 value in the specific heat is by realizing that 
a spin chain gives rise to a linear specific heat. Although a Heisenberg chain has no 
long-range order, short-range antiferromagnetic correlations lead to spin-wave like 
excitations which can be rather well described by linear spin-wave theory. Indeed, 
Kohgi et al. (private communication) measured the spin-excitation spectrum by 
inelastic neutron scattering and found a one-dimensional spin-wave spectrum.

Since spin-wave-like excitations are responsible for the fermionic low-energy 
excitations associated with the specific heat and susceptibility we are dealing here 
with charge-neutral heavy fermions in distinction to the charged heavy electrons, 
which appear, e.g., in CeAlß. Therefore, we speak of an uncharged or neutral heavy 
Fermi liquid.

The physical interpretation given above allows for an explanation of another ex
periment. It has been previously found that an applied magnetic field of 4 tesla has 
little influence on the 7 coefficient above 2 K, but suppresses 7 considerably below 
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2 K (Helferich, Steglich and Ochiai, private communication). This effect is unex
pected, since one would have thought that the changes are of order (jißH/RbT*)2 
and therefore very small. However, we can explain the experiments by providing 
for a weak coupling between parallel short chains. When linear spin-wave theory 
is applied, a ratio between interchain and intrachain coupling of order 10-4 opens 
an anisotropy gap which modifies C(T) in accordance with observation (Schmidt 
et al., 1996).

5 Conclusions

We have shown that heavy-fermion excitations may be of very different physical 
origin. Three distinct mechanisms have been discussed which result in low-energy 
scales required for the heavy quasiparticles. The most, and until recently only one 
studied so far refers to Kondo lattices and is based on the formation of (local) 
singlet states. They result from a weak hybridization of the 4/ electrons with the 
conduction electrons. In that case the low-energy scale is given by the binding 
energy associated with the singlets. In distinction to Kondo lattices we are deal
ing in the case of Nd2-a;Ce:ECuO4 with a lattice of Nd ions with a well localized 
magnetic moment which are coupled to a two-dimensional system of strongly cor
related conduction electrons. In that case a low-energy scale is provided by the 
Zeeman energy of the Nd magnetic moment in the slowly fluctuating molecular 
field set up by the Cu spins. Finally, in Yb4As3 the low-energy scale is due to the 
band width of the spin-wave like excitations in magnetic chains formed by Yb3+ 
ions. The few carriers, i.e., one per 103 Yb ions are unimportant for the low tem
perature specific heat which is governed exclusively by spin excitations (spinons). 
The system serves as an example of almost perfect separation between spin and 
charge degrees of freedom. For the purpose of understanding its low temperature 
thermodynamic properties it can be considered a neutral or chargeless heavy Fermi 
liquid. Yb4As3 belongs to a class of materials often referred to as low-carrier Kondo 
systems or Kondo insulators (for recent references see, e.g., Proc., 1996). As we 
have shown that might be misleading, at least for Yb4As3, where the appearance 
of heavy fermions has nothing to do with the Kondo effect. However, that material 
is rather distinct to CeNiSn or other members of that class. Therefore, the origin 
of low-energy scales must be investigated from case to case.

In summary, heavy-fermions behaviour can have a variety of physical origins. It 
remains a challenge for the future to uncover other processes leading to low-energy 
scales.
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